什么是数据仓库?
数据仓库(Data Warehouse),可简写为DW或DWH,数据仓库,是为了企业所有级别的决策制定计划过程,提供所有类型数据类型的战略集合。它出于分析性报告和决策支持的目的而创建。为需要业务智能的企业 ,为需要指导业务流程改进、监视时间,成本,质量以及控制等。 数据仓库是依照分析需求、分析维度、分析指标进行设计的。
数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,它用于支持企业或组织的决策分析处理。是为了便于多维分析和多角度展现而将数据按特定的模式进行存储所建立起来的关系型数据库,它的数据基于OLTP源系统。
数据仓库的特点
1、数据仓库是面向主题的
与传统的数据库不一样,数据仓库是面向主题的,那什么是主题呢?首页主题是一个较高乘次的概念,是较高层次上企业信息系统中的数据综合,归类并进行分析的对象。在逻辑意义上,他是对企业中某一个宏观分析领域所涉及的分析对象。(说人话:就是用户用数据仓库进行决策所关心的重点方面,一个主题通常与多个操作信息型系统有关,而操作型数据库的数据组织面向事务处理任务,各个任务之间是相互隔离的);面向主题-是指:数据仓库中的数据是按照一定的主题域进行组织。 主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。
2、数据仓库是集成的
数据仓库的数据是从原来的分散的数据库数据(mysql等关系型数据库)抽取出来的。操作型数据库与DSS(决策支持系统)分析型数据库差别甚大。第一,数据仓库的每一个主题所对应的源数据在所有的各个分散的数据库中,有许多重复和不一样的地方,且来源于不同的联机系统的数据都和不同的应用逻辑捆绑在一起;第二,数据仓库中的综合数据不能从原来有的数据库系统直接得到。因此子在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键,最复杂的一步,所要挖成的工作有:
(1)要统计源数据中所有矛盾之处,如字段的同名异议、异名同义、单位不统一,字长不统一等。
(2)进行数据的综合和计算。数据仓库中的数据综合工作可以在原有数据库抽取数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。
3、数据仓库的数据是随着时间的变化而变化的
数据仓库中的数据不可更新是针对应用来说的,也就是说,数据仓库的用户进行分析处理是不进行数据更新操作的。但并不是说,在从数据集成输入数据仓库开始到最后被删除的整个生存周期中,所有的数据仓库数据都是永远不变的。
数据仓库的数据是随着时间变化而变化的,这是数据仓库的特征之一。这一特征主要有以下三个表现:
(1)数据仓库随着时间变化不断增加新的数据内容。数据仓库系统必须不断捕捉OLTP数据库中变化的数据,追加到数据仓库当中去,也就是要不断的生成OLTP数据库的快照,经统一集成增加到数据仓库中去;但对于确实不在变化的数据库快照,如果捕捉到新的变化数据,则只生成一个新的数据库快照增加进去,而不会对原有的数据库快照进行修改。
(2)数据库随着时间变化不断删去旧的数据内容 。数据仓库内的数据也有存储期限,一旦过了这一期限,过期数据就要被删除。只是数据库内的数据时限要远远的长于操作型环境中的数据时限。在操作型环境中一般只保存有60~90天的数据,而在数据仓库中则要需要保存较长时限的数据(例如:5~10年),以适应DSS进行趋势分析的要求。
(3)数据仓库中包含有大量的综合数据,这些综合数据中很多跟时间有关,如数据经常按照时间段进行综合,或隔一定的时间片进行抽样等等。这些数据要随着时间的变化不断地进行从新综合。因此数据仓库的数据特征都包含时间项,以标明数据的历史时期。